Synthesis of 131I-labeled glucose-conjugated inhibitors of O6-methylguanine-DNA methyltransferase (MGMT) and comparison with nonconjugated inhibitors as potential tools for in vivo MGMT imaging.
نویسندگان
چکیده
O(6)-Substituted guanine derivatives are powerful agents used for tumor cell sensitization by inhibition of the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). To provide targeted accumulation of MGMT inhibitors in tumor tissue as well as tools for in vivo imaging, we synthesized iodinated C(8)-alkyl-linked glucose conjugates of 2-amino-6-(5-iodothenyl)-9H-purine (O(6)-(5-iodothenyl) guanine, ITG) and 2-amino-6-(3-iodobenzyloxy)-9H-purine (O(6)-(5-iodobenzyl) guanine, IBG). These compounds have MGMT inhibitor constants (IC(50) values) of 0.8 and 0.45 microM for ITGG and IBGG, respectively, as determined in HeLa S3 cells after 2-h incubation with inhibitor. To substantiate that the (131)I-(hetero)arylmethylene group at the O(6)-position of guanine is transferred to MGMT, both the glucose conjugated inhibitors ITGG and IBGG and the corresponding nonglucose conjugated compounds ITG and IBG were labeled with iodine-131. The radioiodinations of all compounds with [(131)I]I(-) were performed with radiochemical yields of >70% for the destannylation of the corresponding tri-n-butylstannylated precursors. The binding ability of [(131)I]ITGG, [(131)]IBGG, [(131)I]ITG, and [(131)I]IBG to purified MGMT was tested. All radioactive compounds were substrates for MGMT, as demonstrated using a competitive repair assay. The newly synthesized radioactive inhibitors were utilized to study ex vivo biodistribution in mice, and the tumor-to-blood ratio of tissue uptake of [(131)I]IBG and [(131)I]IBGG was determined to be 0.24 and 0.76 after 0.5 h, respectively.
منابع مشابه
Inhibition of O6-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors: comparison with nonconjugated inhibitors and effect on fotemustine and temozolomide-induced cell death.
The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) is an important suicide enzyme involved in the defense against O(6)-alkylating mutagens. It also plays a role in the resistance of tumors to anticancer drugs targeting the O(6)-position of guanine, such as temozolomide and fotemustine. Several potent MGMT inhibitors have been developed sensitizing cells to O(6)-alkylating ag...
متن کاملO6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?
Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...
متن کاملبررسی نقش پلی مورفیسمهای ژن O6 – متیل گوانین متیل ترانسفراز در سرطان کولورکتال
Abstract Background: Sporadic colorectal cancer is the fourth most common cancer in Iran. The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is involved in the cellular defense against alkylating agents. Genetic alterations in the MGMT gene may impair the protein’s ability to remove alkyl groups from the O6-position of guanine, thereby raising the mutation rate and increasi...
متن کاملIrradiation-induced expression of O6-methylguanine-DNA methyltransferase in mammalian cells.
O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein which plays an important role in chemotherapy, mutagenesis, and carcinogenesis. The specific activity of MGMT in female rat liver can be induced by approximately 20-fold by treatment of the rats with gamma-irradiation. Maximum response occurred 48 h after 15 Gy irradiation. MGMT levels in male rats were induced by only 3-fold...
متن کاملRibozyme-mediated modulation of human O6-methylguanine-DNA methyltransferase expression.
A synthetic oligonucleotide containing ribozyme sequences targeted to the 5' region of the human O6-methylguanine-DNA methyltransferase (MGMT) mRNA has been constructed. This ribozyme demonstrates cleavage activity in vitro in the presence of Mg2+. To determine whether this ribozyme can function in vivo, HeLa CCL2 cells were transfected with a mammalian expression vector containing the ribozyme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medicinal chemistry
دوره 49 1 شماره
صفحات -
تاریخ انتشار 2006